MECHANICAL RESPONSES AND VISCOELASTIC PROPERTIES OF ASPHALT MIXTURES UNDER HEAVY STATIC AND DYNAMIC AIRCRAFT LOADING

Maria Chiara Guercio, PhD Candidate

Dr. Leslie McCarthy,

Assistant Professor Civil & Environmental Engineering Department

Dr. Yusuf Mehta,

Associate Professor Civil Engineering Department

ACKNOWLEDGEMENTS

- Region II University Transportation Research Center (UTRC), U.S. DOT
- South Jersey Tech Park at Rowan University
- Federal Aviation Administration (FAA) Technical Center
- U.S. Army Corps of Engineers
- NJDOT, DelDOT, RIDOT

PROBLEM STATEMENT

Increasing Flight Demand

Larger Aircraft

Stronger Flexible Pavements

mixtures currently used in the highway sector under heavy static and dynamic aircraft loading

OBJECTIVES

- Measure flow time, viscoelastic properties, and number of cycles to failure of a broad range of asphalt mixtures
- Determine mechanical responses of pavement surface under static and dynamic aircraft loading (FEA)
- Determine the relative pavement life of the mixtures

RESEARCH APPROACH

_iterature Review

- Identify current and emerging asphalt mixtures
- Similar studies

Material Selection Broad range of asphalt mixtures (including 6 mixtures)

Laboratory Testing

- Flow Time in AMPT equipment
- Number of cycles to failure measure with overlay tester
- Compare mixtures based on laboratory performance

FÉA Analysis Compare mixtures based on mechanical responses under heavy static and dynamic aircraft loading

Relative Pavement Life Compare mixtures based on predicted life

CURRENT FLEXIBLE PAVEMENT MIXTURES

FAA P401 Specifications

- Specifies gradation and other test properties
- Dense graded HMA mixtures (PG 76-22 or 64-22)
- Aircraft loadings greater than 12,500 lbs

Modified asphalt mixtures to improve performance

- Hot Mix Asphalt (HMA) with Polymer Modified Binders Logan International Airport
- Reclaimed Asphalt Pavement (RAP) Logan International Airport
- Stone Matrix Asphalt (SMA) Indianapolis International Airport

EMERGING ASPHALT MIXTURE TECHNOLOGIES

- Warm-Mix Asphalt (WMA)
 - Logan International
 - Steven Anchorage International
 - O'Hare International
- Performance-based mixtures
 - Bottom Rich Intermediate Course (BRIC)

MIXTURE PROPERTIES

Mixture	Asphalt Mixtures Tested (6 total)							
Design Properties	FAA P-401 (Baseline)	WMA- 35% RAP	SMA	HMA PG82-22	HMA PG70-22	BRIC		
PG Grade	76-22	64-28	76-22	82-22	70-22	70-28		
Asphalt Content (%)	5.02	5.25	4.87	5.41	4.83	8.40		

AIRFIELD PAVEMENT ANALYSIS

FAA National Airport Pavement Test Facility Construction Cycle -1

Material	Thickness (mm)	Density (kg/m3)	Poisson's Ratio	Elastic Modulus (MPa)
Asphalt Surface	127	-	-	Estimated from creep data or obtained from laboratory testing
Stabilized Asphalt-Treated Base P-401	127	2,403	0.35	2,758
Subbase P-209	216	2,162	0.35	261
Medium Strength Subgrade	2,438	1,490	0.4	72

3D FEA - ABAQUS

RUTTING POTENTIAL

https://faapaveair.faa.gov

LABORATORY TESTING 800 FLOW TIME

Flow Time Test - AASHTO TP79-11 Specimen Preparation - AASHTO PP 60

FLOW TIME TEST RESULTS

Flow time curve was utilized to determine the viscoelastic properties (creep data)

1			
	Asphalt Mixture	Flow Time (sec)	Microstrains
	FAA P401 (Baseline)	385	31,721
	WMA- 35% RAP	213	39,202
	SMA	206	36,808
	HMA PG82-22	262	30,302
	HMA PG70-22	53	25,424
	BRIC	4,011	39,661

MECHANICAL RESPONSES (ABAQUS TM)

FATIGUE CRACKING POTENTIAL

https://faapaveair.faa.gov

LABORATORY TESTING OVERLAY TESTER

TxDOT test procedure Tex-248-F AMPT equipment

OVERLAY TEST RESULTS

Asphalt	Sample No.	Initial Load	Final Load	Reduction	Load Cycles	
Mixture	Sample 10.	(kN)	(kN)	(%)	to Failure	
EA A D 401	1	3.414	0.923	83	1,200	
FAA P-401	2	3.408	0.915	81	1,200	
WMA-	1	2.412	0.756	93	728	
RAP	2	2.414	0.444	93	640	
CMA	1	3.124	1.039	93	255	
SMA	2	3.883	1.004	93	192	
BRIC	1	1.987	0.773	77	1,200	
DKIC	2	2.129	0.719	78	1,200	

Failure Criteria

- 300 cycles dense graded mixtures
- 750 cycles fine graded crack-resistant mixtures

MECHANICAL RESPONSES (ABAQUS TM)

TENSILE STRESSES FROM CENTER TO EDGE OF WHEEL

FAARFIELD

Distress model

- Compressive strains top of subgrade
- Tensile strains bottom of HMA surface

Aircraft load

• Gross weight 181,437 kg; tire pressure 1,379 kPa

	Asphalt Mixtures - E* (MPa)								
Temperature	Baseline (FAA P-401)	WMA- 35% RAP	SMA	HMA PG82-22	HMA PG70-22	BRIC			
52.5°C	103.7	57.0	60.4	81.5	77.6	135.4			
25°C	1,996	1,935	851	2,128	1,822	1,996			

RELATIVE PAVEMENT LIFE (FAARFIELD)

Stiffness measured at 52.5°C

Mixture Type

RELATIVE PAVEMENT LIFE (FAARFIELD)

Stiffness measured at 25°C

CONCLUSIONS

Potential for alternative mixtures to be used as surface lift in airfield taxiways and aprons

RUTTING POTENTIAL

BRIC

P-401

WMA-RAP SMA HMA PG82-22

HMA PG70-22

FATIGUE CRACKING POTENTIAL

BRIC

HMA PG82-22

P-401

WMA-RAP HMA PG70-22

SMA

Larger variety of aircraft wheel configurations
Field evaluation to validate analysis
Expand to include more mixtures and explore different binders

Thank you!

http://www.airplane-pictures.net

Maria Chiara Guercio

mguercio@villanova.edu (856) 982 7155

SIMILAR STUDIES

Author (year)	Title	Finding
Rushing, Mejías- Santiago, Doyle (2013)	ASSESSMENT OF WARM MIX ASPHALT (WMA) FOR HEAVY TRAFFIC AIRFIELDS	Based on <u>laboratory performance</u> test data, WMA is a viable alternative to HMA for wearing surfaces on airfields.
Wang, Al-Qadi, Portas, Coni (2013)	THREE-DIMENSIONAL FINITE ELEMENT MODELING OF INSTRUMENTED AIRPORT RUNWAY PAVEMENT RESONSES	A <u>3D finite element model</u> was used to model and analyze an instrumented runway at the Cagliari Elmas airport to determine pavement responses under moving aircraft moving tire loading.
Prowell, Watson, Hurley, Brown (2010)	EVALUATION OF STONE MATRIX ASPHALT (SMA) FOR AIRFIELD PAVEMENTS	Based on <u>literature review</u> , <u>performance of in-service</u> <u>airfields</u> , and the <u>laboratory testing</u> , SMA performs similar or superior to dense-graded P401 mixes in terms of rutting susceptibility and deicer resistance.

ABAQUS INPUT PARAMETERS

Prony Series

$$J(t) = A + B\left(1 - e^{\frac{-t}{C}}\right) + D\left(1 - e^{\frac{-t}{E}}\right)$$

ABAQUS MODEL

- 3D reduced integration elements (C3D8R)
- Finer mesh under load path
- Boundary conditions:
 - Constrained along the bottom in all directions
 - Sides restrained in movement in the x- and z-direction
- Layers:
 - Surface layer viscoelastic or elastic
 - Base, subbase, and subgrade elastic
- Size: 14m (L); 3m (H); 14m (W)

KENLAYER vs ABAQUS (Static Analysis) ~ 4% error

between closed form solution and ABAQUS

ABAQUS ™ Model

MECHANICAL RESPONSES (ABAQUS TM) <u>STATIC</u>

Mixtures	Stress	Deflection	% deviation from P401		
	(kPa)	(mm)	Stress	Deflection	
FAA P401 (Baseline)	1,334	3.030	N/A	N/A	
BRIC	1,309	3.020	-1.90%	-0.30%	
WMA- 35%RAP	1,364	3.084	2.00%	1.80%	
SMA	1,355	3.078	1.60%	1.60%	
HMA PG82-22	1,349	3.063	1.10%	1.10%	
DGA	1,373	3.084	2.90%	1.80%	
HMA PG70-22	1,404	3.198	5.30%	5.50%	

MECHANICAL RESPONSES (ABAQUS TM) <u>DYNAMIC</u>

Mixtures	Stress		% deviation from P401		
	(kPa)	(mm)	Stress	Deflection	
FAA P401 (Baseline)	1,037	1.046	N/A	N/A	
BRIC	1,006 1.011		-3.00%	-3.40%	
WMA- 35%RAP	1,114	1.265	6.00%	19.90%	
SMA	1,096	1.207	5.70%	15.30%	
HMA PG82-22	1,073	1.186	3.50%	13.30%	
HMA PG70-22	1,211	1.532	16.80%	46.40%	
DGA	1,162	1.288	12.00%	23.10%	

MECHANICAL RESPONSES (ABAQUS TM)

	3D FEA (ABAQUS TM)							
Asphalt Mixtures	Static Load				Dynamic Load			
	E _{bottom}	$\epsilon_{ m top}$		% variation from P-401		$\epsilon_{ m top}$	% variation from P-401	
	(με)	(με)	E _{bottom}	$\epsilon_{ m top}$	(με)	(με)	$\epsilon_{ m bottom}$	$\epsilon_{ m top}$
FAA P-401	1 165	291	Dagalina	Dogalina	211	56	Baselin	Baseline
(Baseline)	1,165	291	Baseline	Baseline	211	56	e	Daseillie
WMA-RAP	1,183	295	2%	1%	216	58	2%	2%
SMA	1,641	387	41%	33%	377	98	79%	72%
HMA	1 120	283	20/	-3%	202	5.5	40/	20/
PG82-22	1,128	283	-3%	-3%	202	55	-4%	-3%
HMA	1 210	202	50/	40/	225	(0	70/	(0/
PG70-22	1,218	18 302 5%	4%	225	60	7%	6%	
BRIC	684	182	-41%	-37%	541	32	-49%	-43%

DYNAMIC LOADING

Pressure amplitude on <u>Element 3</u> as wheel moves from A to B